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4. The Reliability of Automata

4.1. Von Neumann’s Solution

Perhaps the first to consider this problem in detail was von Neumann
(1952, 1956). Pitts and McCulloch (1947), in attempting to apply the
theory of automata to problems concerning auditory and visual percep-
tion and cortical functioning, had noted that the modular nets designed to
model these aspects of complex biological systems ought to be constructed
so that their function was unperturbed by small fluctuations in excita-
tions and inhibitions, in thresholds of modules and in local details of
connection between modules. Wiener (1948) had also considered an
aspect of this problem, that of computer malfunctions caused by mal-
functions and failures of their constituent modules. He had noted that in
existing computers the use of majority logic—* What I tell you two out
of three times is true”’—coupled with a search procedure for finding new
modules, resulted in reliability of computation.

It was with this background in mind that von Neumann attacked these
problems. His principal solution to this problem was obtained in the
following manner. It is desired to obtain a reliable output from a finite
automaton, corresponding to some prescribed Boolian function. It is
assumed that modules are available for the construction of the autom-
aton, that compute one of two functions, either the Sheffer-stroke
function s(x,, x,), or else the majority function m(x,, x,, x3). Either all
modules compute one of these functions, or else they all compute the
other. In either case, arbitrary Boolian functions may be computed by
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Von Neumann's Solution 23

nets of these modules, provided certain tricks are also utilized. Signals
are transmitted from one module to another via connections that carry
only binary impulses.

It is also assumed that modules fail to function correctly, with a
(precise) probability e. This malfunction is assumed to occur statistically
independently of the general state of the net, and of the occurrence of
other malfunctions. (In making this particular assumption, von Neumann
observed that a more realistic one would be that

the malfunctions are statistically dependent on the gen:éral state of the
network, and of the occurrence of other malfunctions. In any particular
state, however, a malfunction of the basic module in question has a
probability of malfunction which is ¢

but for ease of analysis, he adopted the simpler assumption.)

To minimize the effects of module malfunctions, a network is designed
that comprises many more modules and connections than are absolutely
necessary to compute the desired Boolian function; i.e., a redundant
network is designed. Thus the finite automaton depicted in Figure 4.1,

Figure 4.1. Irredundant modular net comprising only modules
computing the Sheffer stroke function.

which realizes a given definite event, in a supposedly irredundant way, is
used as a precursor for the redundant automaton depicted in Figure 4.2.
This network has the following structure. Each module of the precursor
network is replaced by an aggregate of modules of the same type, and
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Figure 4.2. Redundant version of the network shown in Figure 4.1. A, redundant
aggregates; a, permutations of 123.
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each connection is replaced by a bundle. The organization within each
aggregate and bundle is not completely ordered—some microlevel
randomness is permitted. However, the organization between aggregates
follows exactly that of the precursor network—no macroleve] randomness
is permitted. Each aggregate and bundle processes only that which the
precursor single module and connection processed. Thus many modules
and connections of the network are redundant. It is this redundancy that
allows the degrading effects of malfunctioning modules to be reduced,
since each aggregate operates on a repeated signa! carried by the bundle
and makes a decision only on a majority basis.

The details of this process are as follows. Each bundle comprises n
connections, each of which carries only binary impulses. There are thus
2" distinct patterns of excitation or signal configurations per bundle,
ranging from (111---1) to (000- - -0). The number of ones in any con-
figuration is termed ¢, and a fiduciary level 4 is set, such that

.. mn> &2 (1 - d)n signals I
2. 0< €< dn signals 0 (4.1)
3. dn < ¢ < (1 — d)n signals malfunction

Each redundant aggregate operates on its input bundles in the following
manner.

Its first rank of modules computes # copies of s(x1, x); L.e., this rank
computes $(x,,,, Xoy,), $(X1a, Xop,), * 7, §(%14,, Xy, ), Where (a,a, -, a)
and (b, b, -+, b,) are any distinct permutations of (1,2,---,n). The
output bundle of this rank is then split, permuted, and its signal con-
figurations are then processed by a second rank of modules. This second
process is then iterated, and the resultant bundle carries signal con-
figurations to other aggregates. The first rank is called, following von
Neumann, an executive organ since it “executes’ the given function of
the aggregate. The set of succeeding ranks is called, a restoring organ,
since its effect, as we shall describe, is to combat the degrading effects of
module malfunctions occurring in the executive rank, and so restore
signal configurations that are corrupted by noise. (Figure 4.3.) This is
effected as follows: any signal configuration whose excitation level £ is
greater than a certain initial value ¢, has this level increased by the
restoring organ, and conversely any signal configuration whose excitation
level £ is lower than ¢ has its level decreased. (Figure 4.4.) By this
means, malfunctions, which are represented by excitation levels taking
values between n and (I — 4)n, are gradually corrected, since these
particular excitation levels are gradually replaced by ones taking values
outside the above region.
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Figure 4.3. Redundant aggregate shown in detail. e,
“executive’ organ; r,‘‘restoring’’ organ.

Figure 4.4. Transfer function of the
restoring organ.

Output
excitation
level

Input
excitation
level



Other Approaches to Design of Reliable Automata 27

The aggregate itself is, as we have noted, redundant, and this redund-
ancy may be defined as

N = 3n (4.2)

For given probability of malfunction ¢, von Neumann was able, by
varying 4 and #, to show that an optimum 4 existed, such that no mal-
functions propagated throughout the redundant network. He obtained
for the over-all probability of malfunction of the network P, given
modules that malfunction with a probability of error e = 5 x 1073, the
function

p

11

6'4_10-8.011/10000 (43)

n
This expression is such, however, that rather large values of n were
required to obtain reasonably small P’s. (See Table 4.1.) Von Neumann

TABLE 4.1. PROBABILITY OF NETWORK MALFUNCTION VERSUS REDUNDANCY

n P
1 000 2.7 x 10-2
2 000 2.6 x 10-8
3 000 2.5 x 10-%
5000 40 x 10-°8
10 000 1.6 x 10-1°
20 000 2.8 x 10-1°
25 000 1.2 x 10-28

was not satisfied with this solution and considered that

error should be treated by thermodynamic methods, and be the subject
of a thermodynamical theory, as information has been, by the work of
L. Szilard and C. E. Shannon.

4.2. Other Approaches to the Design of Reliable Automata

Other approaches to the design of reliable automata involving the use
of more complex modules with somewhat different error behavior than
those previously cited also resulted in redundant automata with the same
general character as that given by Equation 4.3. Thus Allanson (op. cit.)
considered the design of networks comprising modules that compute a
majority function of many inputs. A typical module is shown in
Figure 4.5.

Errors are assumed to occur during synaptic transmission, i.e., in the
transmission of signals between modules, as well as in modules them-
selves. These synaptic errors are assumed to be of two kinds: those that
block an input signal, and those that spontaneously produce a fictitious
input signal. We may conveniently represent the error behavior of a single
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Figure 4.5. Complex module with synaptic
replication.

synapse via the terminology of information theory, as a binary asym-
metric channel, in which p; and p, are the respective “positive”” and
“negative” synaptic errors. Allanson found that an increase in the
reliability of synaptic transmission could be obtained by increasing the
number of endbulbs synapsing on any module, i.e.,, by synaptic
replication.

The extension of these considerations to networks with both noisy
modules and noisy connections was first considered by Muroga (op. cit.)
and by Verbeek, Blum, Cowan, and McCulloch (op. cit.). They used
modules similar to that described in Figure 4.6, except that with each
module was associated a probability of error e. In addition, synaptic
errors occurring with probability pg were considered. These errors were
controlled, essentially by combining modular iteration and synaptic
replication. For example, the function P(t) = 7,(t — 1) v Jo(t — 1) was
computed reliably by the network shown in Figure 4.6. Each variable is
represented by a bundle of n lines as before, and an excitation level
¢:4n < ¢ < (I — d)n signals a malfunction, The threshold 8 of each of
the n modules is set such that input errors are corrected, and only
module errors remain. The condition for this is that

—2n(1 — 4) < 8 2 —n(l + 4) (4.4)
which leads to the equation

§ = —(n + [nd] + 0.5) (4.5)
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Figure 4.6. Error-controlling modular network. &, All-to-all connection pattern.

where 4 < 0.33 and [n4] is the smallest integer greater than nd. We
note that each input line synapses on all » modules, each of which
computes the threshold function given by Equation 4.5.

An upper bound on the probability of network malfunction owing to
input and synaptic errors may be calculated as a cumulative binomial
probability distribution. Combining this with the probability of network
malfunction owing to module errors provides an upper bound to the
probability of malfunction for the output bundle. From this the cumu-
lative binomial probability of malfunction P of the network can be
calculated. This calculation is complicated by the fact that input and
synaptic errors may or may not produce independent effects in the output.
An upper bound on P may be obtained, however, by calculating the
probability of network malfunction for both cases, and taking the
resultant largest value of the two for P. The results are as follows: Let ¢
be the probability of input errors (in the example of Figure 4.6 this
would be equivalent to assuming that the input modules malfunction

with probability ¢). Then
7= &(l = ps) + (I — «)ps (4.6)

is the probability of malfunction due to the effects of both input and
synaptic errors. Table 4.2 shows the variation of P with n, 7, and ¢, in
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TABLE 4.2. PROBABILITY OF MODULAR MALFUNCTION VERSUS REDUNDANCY

max P
n 7 =c¢=0.005 7 =¢ = 0.01
5 6.7 x 10-2 2.4 x 102
10 3.1 x 10-3 3.8 x 10-2
20 1.0 x 10-¢ 7.2 x 103
30 3.6 x 10-8 1.5 x 10-3
40 ~10-7 5.6 x 10°5

the case that 5 = ¢. Comparison of Table 4.2 with Table 4.1 provides
some indication of the increased efficiency obtained by using more
complex modules to control malfunctions. In fact, the increased efficiency
is such that errors are controlled within networks of unit depth and error-
restoring networks are not required. Alternatively, the more complex
modules may be considered to realize a combination of computation and
error-restoring, all in one location (Cowan, 1960b). However, the
probability of malfunction P goes to zero only as n goes to infinity,
similarly to von Neumann’s system: except that the approach to infinity
is slower for given P. Thus, although an increased efficiency compared
with von Neumann’s construction has been obtained, arbitrarily high
redundancy is still required to achieve arbitrarily low probabilities of
malfunction.

4.3. A Comparison with Information Theory

If we compare the redundant modular networks designed by von
Neumann et al. with the redundant communication system of Shannon
(1948, op. cit.), certain fundamental differences are immediately apparent.
We shall compare modular redundancies with that redundancy of signal
sequence used to combat the effects of noisy channels. We define the
modular redundancy of a network, N, to be the ratio of the number of

modules in the redundant network to the number of modules in the
irredundant one. Thus

N = 3n (von Neumann)
N =n  (Muroga et al.)
Similarly, the computation ratio per module R is defined to be 1/N so that

(4.7)

R = —3}7—1 (von Neumann)
| (4.8)

R = - (Muroga et al.)

It is evident from Tables 3.3 and 3.4 that the probability of malfunc-

tion P is approximately proportional to exp (—c/R,); that is,
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P ~ d,-exp (—— %) (von Neumann)

(4.9)

P ~ d,-exp (— %) (Muroga et al.)

where d, and d, are slowly varying functions of #, and where ¢, and ¢, are
constants. _

If we compare Equation 4.9 with the expression for the probability of
identification errors, P derived from Equation 3.15, i.e.:

P ~ 2-7C-® (4.10)

we see an obvious difference in that P goes to zero with n, independently
of R, provided only that R £ C, whereas P goes to zero only with R.
This situation is depicted in Figure 4.7:

)

14 N

Figure 4.7. Comparison of differ- .
ent solutions to the reliability = o b
- a c
problem. a, von Neumann; b, R
Muroga et al.; ¢, Shannon. °
e
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The import of this is that the redundant automata designed by von
Neumann and by Muroga et al. do not exhibit noise-free behavior of the
type that would permit computation capacities to be defined.

4.4, Attempts to Apply Information Theory

The absence of computation capacities for the redundant automata
considered in Sections 4.1 and 4.2 suggested that more direct applications
of coding theory to the computation problem might result in redundant
automata displaying such capacities. Elias (op. cit.) accordingly set up a
model of a computation system consisting of a noisy modular network
serviced by noiseless encoders and decoders. The structure of this system,
which we have modified somewhat without changing its essential
features, is depicted in Figure 4.8. The modular network is required to
realize the event E that corresponds to a logical function of the inputs
x;, and x,. Elements of the network comprise modules that compute
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Boolian functions of one or two variables, e.g., 7, &, v, =, @, etc., with
small but nonzero probabilities of error. These probabilities are statisti-
cally independent of the general state of the network, and of the occur-
rence of other malfunctions; i.e., the same error assumption as von
Neumann'’s is made. The modular network is, however, irredundant, and
the redundancy in the system is not of hardware or channel but is
simply redundancy of signal sequence, as in the case of communication.
Sequences of length k of inputs x; and x, are encoded into signal
sequences of length n, and these serve as inputs to the network, and the
output sequences of length n are decoded into sequences of length Kk,
which, one hopes, correspond to the event to be realized. It is important
to note, however, that the network is memoryless, and all processing
occurs digit by digit, so that no operation occurs within a sequence.

It 1s assumed that each input x; and x, is independently encoded, and
that if the modular network were to be noiseless, then the decoder maps
signal sequences 1:1 into output sequences. These assumptions ensure
that the prescribed set of events be realized entirely in the noisy modular
network and not (partly or wholly) in the noiseless encoding or decoding
networks.

The results obtained were as follows. Of the sixteen possible Boolian
functions of two inputs x, and x,, only eight were such that (n, k) codes
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could be used that realized positive rates of transmission of information
through the network at vanishing small frequencies of error. Of these
eight, six were of little interest, being the functions I (tautology), O
(contradiction), ¥;, X, &;, and X,. The remaining two, x; @ x, and
x, = xp, are such that each maps the set of 2¥ n-digit sequences into
itself in such a way that the metrical properties of the set are preserved,
i.e., sequences differing from one another by alarge number of digits, in the
input map into similar sequences in the output. This means that Hamming
codes (op. cit.) or any other group codes (Slepian, 1956) may be used to
code input sequences to these functions. However, x; @ x; and x, = x,
are not universal functions, and so the entire set of eight functions is
incomplete; i.e., networks that realize even definite events cannot in
general be constructed from only members of this set.

Elias showed that for the other set of eight functions, comprising
Xy & xg, ) & Xg, Xy & xg, Xy & Xy, X1V Xgy Xy V Hgy Xy V Xy, and X, v &y,
no code is better than that one which has the digit encoders repeat each
input digit n times and takes a majority of the outputs as the correct
output. This implies that for those eight functions, arbitrarily high
reliability of computation can be achieved only at the expense of arbi-
trarily low rates of computation. Elias’ analysis was repeated by Peterson
and Rabin (0p. cit.), who obtained substantially the same result.

4.5, Discussion

We may conveniently separate the considerations reported so far into a
number of different classes. The first class consists of those considerations
of von Neumann in which essentially simple modules are studied that
malfunction with probability . Redundant aggregates and sequences
consist essentially of many copies of simple modules, or else of message
digits. That is, in the process of coding no increase of modular complexity
occurs. (We use as a measure of modular complexity the number of
inputs to a module.) The resultant networks certainly control and correct
errors, but do so, generally, in an inefficient manner. More efhcient
constructions were discovered by Allanson, Muroga, and Verbeek et
al. (op. cit.) wherein aggregates of complex modules were used to replace
simple modules.

In none of these classes is any positive rate for reliable information
processing exhibited, in the sense that we have previously defined. It 1s
evident, however, that increased efficiency in the coding of redundant
automata may be obtained at a cost of increased complexity of the
modules comprising such automata, leading to the conclusion that only
automnata consisting of redundant aggregates of complex modules can
exhibit nonvanishing computation ratios for reliable modular computation.



