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Hard problems on networks

e Communication
with neighbors

* Local computation

* Global objective

e Can we solve the
optimization
efficiently?
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* Given a hard problem P, come up with problem P,
such that

Xopt

— We can efficiently, locally find a solution for P,
— We can efficiently determine if this solution 1s valid for P

— If no valid solution exists, we hope to get a bound on the

complexity of P



Distributed approximations

* Hierarchies of approximations

* Linear (Sherali-Adams) vs. Semidetinite (Parillo,
Lasserre)

L1 C Lo C ... C Ly

n N |
S C S C ... C S

fast/easy hard slog
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Linear = Beliet Propagation

* Key magic: Dynamic Programming

* Recursive attack min J[i, j] =

min (min IR, k)
+ min Ji[k, j])

* Don’t repeat calculations

e Linear time in network size
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Semidetinite Programs

* More complicated
constraints

e Solve with Interior
Point Methods

* (Can be very slow
* Need global info
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Tree based approximations

* Use tree-parameterization or “loopy”
approximations

e FEach successive relaxation groups nodes

* Revisit treewidth to solve problems exactly

[Bodlander 87]
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