

Preliminary versions of this paper were presented at ISIT 1997 in Ulm, Germany, on
June 30, 1997, and at ISCTA 1997, Ambleside U.K., on July 15, 1997.

Draft of 23 Sep 1999 11:14 a.m.

The Generalized Distributive Law∗

Srinivas M. Aji and Robert J. McEliece

Department of Electrical Engineering
California Institute of Technology

Pasadena, California 91125
(mas,rjm)@systems.caltech.edu

Abstract: In this semi-tutorial paper we discuss a general message-passing algorithm,
which we call the generalized distributive law. The GDL is a synthesis of the work of
many authors in the information theory, digital communications, signal processing, statis-
tics, and artificial intelligence communities. It includes as special cases the Baum-Welch
algorithm, the FFT on any finite Abelian group, the Gallager-Tanner-Wiberg decoding al-
gorithm, Viterbi’s algorithm, the BCJR algorithm, Pearl’s “belief propagation” algorithm,
the Shafer-Shenoy probability propagation algorithm, and the turbo decoding algorithm.
Although this algorithm is guaranteed to give exact answers only in certain cases (the
“junction tree” condition), unfortunately not including the cases of GTW with cycles or
turbo-decoding, there is much experimental evidence, and a few theorems, suggesting that
it often works approximately even when it is not supposed to.

Keywords: distributive law, graphical models, junction trees, belief propagation, turbo
codes.

* This work was supported by NSF grant no. NCR-9505975, AFOSR grant no. 5F49620-
97-1-0313, and grant from Qualcomm. A portion of McEliece’s contribution was performed
at the Sony Corporation in Tokyo, while he was a holder of a Sony Sabbatical Chair.

1

1. Introduction.

The humble distributive law, in its simplest form, states that ab+ac = a(b+c). The left side
of this equation involves three arithmetic operations (one addition and two multiplications),
whereas the right side needs only two. Thus the distributive law gives us a “fast algorithm”
for computing ab + ac. The object of this paper is to demonstrate that the distributive
law can be vastly generalized, and that this generalization leads to a large family of fast
algorithms, including Viterbi’s algorithm and the FFT.

To give a better idea of the potential power of the distributive law and to introduce
the viewpoint we shall take in this paper, we offer the following example.

1.1 Example. Let f(x, y, w) and g(x, z) be given real-valued functions, where x, y,
z, and w are variables taking values in a finite set A with q elements. Suppose we are
given the task of computing tables of the values of α(x,w) and β(y), defined as follows:

α(x,w)
def
=
∑

y,z∈A
f(x, y, w)g(x, z)(1.1)

β(y)
def
=

∑

x,z,w∈A
f(x, y, w)g(x, z).(1.2)

(We summarize (1.1) by saying that α(x,w) is obtained by “marginalizing out” the vari-
ables y and z from the function f(x, y, w)g(x, z). Similarly, β(y) is obtained by marginal-
izing out x, z, and w from the same function.) How many arithmetic operations (additions
and multiplications) are required for this task? If we proceed in the obvious way, we notice
that for each of the q2 values of (x,w) there are q2 terms in the sum defining α(x,w),
each term requiring one addition and one multiplication, so that the total number of arith-
metic operations required for the computation of α(x,w) is 2q4. Similarly, computing
β(y) requires 2q4 operations, so computing both α(x,w) and β(y) using the direct method
requires 4q4 operations.

On the other hand, because of the distributive law, the sum in (1.1) factors:

(1.3) α(x,w) =


∑

y∈A
f(x, y, w)


 ·

(∑

z∈A
g(x, z)

)
.

Using this fact, we can simplify the computation of α(x,w). First we compute tables of
the functions α1(x,w) and α2(x) defined by

(1.4)

α1(x,w)
def
=
∑

y∈A
f(x, y, w)

α2(x)
def
=
∑

z∈A
g(x, z),

which requires a total of q3 +q2 additions. Then we compute the q2 values of α(x,w) using
the formula (cf. (1.3))

(1.5) α(x,w) = α1(x,w)α2(x),

2

which requires q2 multiplications. Thus by exploiting the distributive law, we can reduce
the total number of operations required to compute α(x,w) from 2q4 to q3 +2q2. Similarly,
the distributive law tells us that (1.2) can be written as

(1.6)

β(y) =
∑

x,w∈A
f(x, y, w)

(∑

z∈A
g(x, z)

)

=
∑

x,w∈A
f(x, y, w)α2(x),

where α2(x) is as defined in (1.4). Thus if we precompute a table of the values of α2(x) (q2

operations), and then use (1.6) (2q3 further operations), we only need 2q3 + q2 operations
(as compared to 2q4 for the direct method) to compute the values of β(y).

Finally, we observe that to compute both α(x,w) and β(y) using the simplifications
afforded by (1.3) and (1.6), we only need to compute α2(x) once, which means that we
can compute the values of α(x,w) and β(y) with a total of only 3q3 + 2q2 operations, as
compared to 4q4 for the direct method.

The simplification in Example 1.1 was easy to accomplish, and the gains were rela-
tively modest. In more complicated cases, it can be much harder to see the best way to
reorganize the calculations, but the computational savings can be dramatic. It is the ob-
ject of this paper to show that problems of the type described in Example 1.1 have a wide
range of applicability, and to describe a general procedure, which we called the generalized
distributive law, for solving them efficiently. Roughly speaking, the GDL accomplishes its
goal by passing messages in a communications network whose underlying graph is a tree.

Important special cases of the GDL have appeared many times previously. In this
paper, for example, we will demonstrate that the GDL includes as special cases the
fast Hadamard transform, Viterbi’s algorithm, the BCJR algorithm, the Gallager-Tanner-
Wiberg decoding algorithm (when the underlying graph is cycle-free), and certain “proba-
bility propagation” algorithms known in the artificial intelligence community. With a little
more work, we could have added the FFT on any finite Abelian group, the Baum-Welch
“forward-backward” algorithm, and discrete-state Kalman filtering. Although this paper
contains relatively little that is essentially new (for example, the 1990 paper of Shafer and
Shenoy [33] describes an algorithm similar to the one we present in Section 3), we believe it
is worthwhile to present a simply-stated algorithm of such wide applicability, which gives
a unified treatment of a great many algorithms whose relationship to each other was not
fully understood, if sensed at all.

Here is an outline of the paper. In Section 2, we will state a general computational
problem we call the MPF (“marginalize a product function”) problem, and show by ex-
ample that a number of classical problems are instances of it. These problems include
computing the discrete Hadamard transform, maximum-likelihood decoding of a linear
code over a memoryless channel, probabilistic inference in Bayesian networks, a “proba-
bilistic state machine” problem, and matrix chain multiplication. In Section 3, we shall
give an exact algorithm for solving the MPF problem (the GDL) which often gives an

3

efficient solution to the MPF problem. In Section 4 we will discuss the problem of finding
junction trees (the formal name for the GDL’s communication network), and “solve” the
example instances of the MPF problem given in Section 2, thereby deriving, among other
things, the fast Hadamard transform and Viterbi’s algorithm. In Section 5 we will discuss
the computational complexity of the GDL. (A proof of the correctness of the GDL is given
in Appendix A.)

In Section 6, we give a brief history of the GDL. Finally, in Section 7, we speculate
on the possible existence of an efficient class of approximate, iterative, algorithms for
solving the MPF problem, obtained by allowing the communication network to have cycles.
This speculation is based partly on the fact that two experimentally successful decoding
algorithms, viz., the GTW algorithm for low-density parity-check codes, and the turbo
decoding algorithm, can be viewed as an application of the GDL methodology on networks
with cycles, and partly on some recent theoretical work on GDL-like algorithms on graphs
with a single cycle.

Although this paper is semi-tutorial, it contains a number of things which have not
appeared previously. Beside the generality of our exposition, these include:

• A de-emphasis of a priori graphical models, and an emphasis on algorithms to construct
graphical models to fit the given problem.

• A number of non-probabilistic applications, including the FFT.

• A careful discussion of message scheduling, and a proof of the correctness of a large class
of possible schedules.

• A precise measure of the computational complexity of the GDL.

2. The MPF Problem.

The GDL can greatly reduce the number of additions and multiplications required in a
certain class of computational problems. It turns out that much of the power of the GDL
is due to the fact that it applies to situations in which the notions of “addition” and “mul-
tiplication” are themselves generalized. The appropriate framework for this generalization
is the commutative semiring.

Definition. A commutative semiring is a set K, together with two binary operations
called “+” and “·”, which satisfy the following three axioms:

S1. The operation “+” is associative and commutative, and there is an additive identity
element called “0” such that k + 0 = k for all k ∈ K. (This axiom makes (K,+) a
commutative monoid.)

S2. The operation “·” is also associative and commutative, and there is a multiplicative
identity element called “1” such that k · 1 = k for all k ∈ K. (Thus (K, ·) is also a
commutative monoid.)

S3. The distributive law holds, i.e.,

(a · b) + (a · c) = a · (b+ c),

4

for all triples (a, b, c) from K.

The difference between a semiring and a ring is that in a semiring, additive inverses
need not exist, i.e., (K,+) is only required to be a monoid, not a group. Thus every
commutative ring is automatically a commutative semiring. For example, the set of real or
complex numbers, with ordinary addition and multiplication, forms a commutative semi-
ring. Similarly, the set of polynomials in one or more indeterminates over any commutative
ring forms a commutative semiring. However, there are many other commutative semi-
rings, some of which are summarized in Table 1. (In semirings 4–8, the set K is an interval
of real numbers with the possible addition of ±∞.)

K “(+, 0)” “(·, 1)” short name

1. A (+, 0) (·, 1)
2. A[x] (+, 0) (·, 1)
3. A[x, y, . . .] (+, 0) (·, 1)
4. [0,∞) (+, 0) (·, 1) sum-product
5. (0,∞] (min,∞) (·, 1) min-product
6. [0,∞) (max, 0) (·, 1) max-product
7. (−∞,∞] (min,∞) (+, 0) min-sum
8. [−∞,∞) (max,−∞) (+, 0) max-sum
9. {0, 1} (OR, 0) (AND, 1) Boolean
10. 2S (∪, ∅) (∩, S)
11. Λ (∨, 0) (∧, 1)
12. Λ (∧, 1) (∨, 0).

Table 1. Some commutative semirings. Here A denotes
an arbitrary commutative ring, S is an arbitrary finite

set, and Λ denotes an arbitrary distributive lattice.

For example, consider the min-sum semiring in Table 1 (entry 7). Here K is the
set of real numbers, plus the special symbol “∞.” The operation “+” is defined as the
operation of taking the minimum, with the symbol∞ playing the role of the corresponding
identity element, i.e., we define min(k,∞) = k for all k ∈ K. The operation “·” is defined
to be ordinary addition [sic], with the real number 0 playing the role of the identity, and
k +∞ = ∞ for all k. Oddly enough, this combination forms a semiring, because the
distributive law is equivalent to

min(a+ b, a+ c) = a+ min(b, c),

which is easily seen to be true. We shall get a glimpse of the importance of this semiring
in Examples 2.3 and 4.3, below. (In fact, semirings 5–8 are all isomorphic to each other;

5

for example 5 becomes 6 via the mapping x → 1/x, and 6 becomes 7 under the mapping
x→ − log x.)

Having briefly discussed commutative semirings, we now describe the “marginalize
a product function” problem, which is a general computational problem solved by the
GDL. At the end of the section we will give several examples of the MPF problem, which
demonstrate how it can occur in a surprisingly wide variety of settings.

Let x1, . . . , xn be variables taking values in the finite sets A1, . . . , An, with |Ai| = qi
for i = 1, . . . , n. If S = {i1, . . . , ir} is a subset of {1, . . . , n}, we denote the product
Ai1 × · · · × Air by AS , the variable list (xi1 , . . . , xir) by xS , and the cardinality of AS ,
i.e., |AS |, by qS . We denote the product A{1,...,n} simply by A, and the variable list
{x1, . . . , xn} simply by x.

Now let S = {S1, . . . , SM} be M subsets of {1, . . . , n}. Suppose that for each i =
1, . . . ,M , there is a function αi : ASi → R, where R is a commutative semiring. The
variable lists xSi are called the local domains and the functions αi are called the local
kernels. We define the global kernel β : A→ R, as follows:

(2.1) β(x1, . . . , xn) =

M∏

i=1

αi(xSi).

With this setup, the MPF problem is this: For one or more of the indices i = 1, . . . ,M ,
compute a table of the values of the Si-marginalization of the global kernel β, which is the
function βi : ASi → R, defined by

(2.2) βi(xSi) =
∑

xSc
i
∈ASc

i

β(x).

In (2.2) Sci denotes the complement of the set Si relative to the “universe” {1, . . . , n}. For
example, if n = 4, and if Si = {1, 4}, then

βi(x1, x4) =
∑

x2∈A2,x3∈A3

β(x1, x2, x3, x4).

We will call the function βi(xSi) defined in (2.2) the ith objective function, or the objective
function at Si. We note that the computation of the ith objective function in the obvious
way requires q1q2 · · · qn additions and (M − 1)q1q2 · · · qn multiplications, for a total of
Mq1q2 · · · qn arithmetic operations, where qi denotes the size of the set Ai. We shall see
below (Section 5) that the algorithm we call the “generalized distributive law” can often
reduce this figure dramatically.

We conclude this section with some illustrative examples of the MPF problem.

2.1 Example. Let x1, x2, x3, and x4 be variables taking values in the finite sets A1,
A2, A3, and A4. Suppose f(x1, x2, x4) and g(x1, x3) are given functions of these variables,

6

and that it is desired to compute tables of the functions α(x1, x4) and β(x2) defined by

α(x1, x4) =
∑

x2∈A2,x3∈A3

f(x1, x2, x4)g(x1, x3)

β(x2) =
∑

x1∈A1,x3∈A3,x4∈A4

f(x1, x2, x4)g(x1, x3).

This is an instance of the MPF problem, if we define local domains and kernels as follows:

local domain local kernel

1. {x1, x2, x4} f(x1, x2, x4)
2. {x1, x3} g(x1, x3)
3. {x1, x4} 1
4. {x2} 1

The desired function α(x1, x4) is the objective function at local domain 3, and β(x2) is the
objective function at local domain 4. This is just a slightly altered version of Example 1.1,
and we shall see in Section 4 that when the GDL is applied, the “algorithm” of Example 1.1
results.

2.2 Example. Let x1, x2, x3, y1, y2, and y3 be six variables, each assuming values
in the binary set {0, 1}, and let f(y1, y2, y3) be a real-valued function of the variables y1,
y2, and y3. Now consider the MPF problem (the commutative semiring being the set of
real numbers with ordinary addition and multiplication) with the following local domains
and kernels.

local domain local kernel

1. {y1, y2, y3} f(y1, y2, y3)
2. {x1, y1} (−1)x1y1

3. {x2, y2} (−1)x2y2

4. {x3, y3} (−1)x3y3

5. {x1, x2, x3} 1.

Here the global kernel, i.e., the product of the local kernels, is

F (x1, x2, x3, y1, y2, y3) = f(y1, y2, y3)(−1)x1y1+x2y2+x3y3 ,

and the objective function at the local domain {x1, x2, x3} is

F (x1, x2, x3) =
∑

y1,y2,y3

f(y1, y2, y3)(−1)x1y1+x2y2+x3y3 ,

which is the Hadamard transform of the original function f(y1, y2, y3) [17]. Thus the
problem of computing the Hadamard transform is a special case of the MPF problem. (A
straightforward generalization of this example shows that the problem of computing the
Fourier transform over any finite Abelian group is also a special case of the MPF problem.
While the kernel for the Hadamard transform is of diagonal form, in general, the kernel

7

will only be lower triangular. See [1, Chapter 3] for the details.) We shall see below
in Example 4.2 that the GDL algorithm, when applied to this set of local domains and
kernels, yields the fast Hadamard transform.

2.3 Example (Wiberg [39]). Consider the (7, 4, 2) binary linear code defined by the
parity-check matrix

H =




1 1 0 1 0 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1


 .

Suppose that an unknown codeword (x1, x2, . . . , x7) from this code is transmitted over a
discrete memoryless channel, and that the vector (y1, y2, . . . , y7) is received. The “likeli-
hood” of a particular codeword (x1, x2, . . . , x7) is then

(2.3) p(y1, . . . , y7|x1, . . . , x7) =

7∏

i=1

p(yi|xi),

where the p(yi|xi)’s are the transition probabilities of the channel. The maximum likelihood
decoding problem is that of finding the codeword that maximizes the expression in (2.3).
Now consider the MPF problem with the following domains and kernels, using the min-
sum semiring (semiring 7 from Table 1). There is one local domain for each codeword
coordinate and one for each row of the parity-check matrix.

local domain local kernel

1. {x1} − log p(y1|x1)
...

...
7. {x7} − log p(y7|x7)
8. {x1, x2, x4} χ(x1, x2, x4)
9. {x3, x4, x6} χ(x3, x4, x6)
10. {x4, x5, x7} χ(x4, x5, x7)

Here χ is a function that indicates whether a given parity-check is satisfied, or not. For
example, at the local domain {x1, x2, x4}, which corresponds to the first row of the parity-
check matrix, we have

χ(x1, x2, x4) =

{
0 if x1 + x2 + x4 = 0
∞ if x1 + x2 + x4 = 1.

The global kernel is then

F (x1, . . . , x7) =

{
− log p(y1, . . . , y7|x1, . . . , x7) if (x1, . . . , x7) is a codeword
∞ if (x1, . . . , x7) is not a codeword.

Thus the objective function at the local domain {xi} is

Fi(ai) = min{− log p(y1, . . . , y7|x1, . . . , x7) : all codewords for which xi = a.}

8

It follows that the value of ai for which Fi(ai) is smallest is the value of the ith component
of a maximum likelihood codeword, i.e., a codeword for which p(y1, . . . , y7|x1, . . . , x7) is
largest. A straightforward extension of this example shows that the problem of maximum-
likelihood decoding of an arbitrary linear block code is a special case of the MPF problem.
We shall see in Example 4.3 that when the GDL is applied to problems of this type, the
Gallager-Tanner-Wiberg decoding algorithm results.

2.4 Example. Consider the directed acylic graph (DAG) G in Figure 1.1 In a DAG,
the “parents” of a vertex v, denoted pa(v), are those vertices (if any) which lie immediately
“above” v. Thus in Figure 1, pa(A) = {B,E}, and pa(B) = ∅. Let us associate a random
variable with each of the vertices, and assume that each random variable is dependent only
on its “parents,” i.e., the joint density function factors as follows:

Pr{B = b, E = e,A = a,R = r,W = w} =

Pr{B = b}Pr{E = e}Pr{A = a|B = b, E = e}Pr{R = r|E = e}Pr{W = w|A = a},

or, using streamlined notation,

(2.4) p(b, e, a, r, w) = p(b)p(e)p(a|b, e)p(r|e)p(w|a).

A DAG, together with associated random variables whose joint density function factors
according to the structure of the DAG, is called a Bayesian network [18].

A R

W

B E

Figure 1 . The Bayesian network in Example 2.4.

1 This example is taken from [29], in which B stands for burglary, E is for earthquake,
A is for alarm sound, R is for radio report, and W is for Watson’s call.

9

Let us assume that the two random variables W and R are observed to have the values
w0 and r0, respectively. The probabilistic inference problem, in this case, is to compute
the conditional probabilities of one or more of the remaining random variables, i.e., B, E,
and A, where the conditioning is with respect to the “evidence” {R = r0,W = w0}. Now
consider the MPF problem with the following local domains and kernels.

local domain local kernel

1. {b} p(b)
2. {e} p(e)
3. {a, b, e} p(a|b, e)
4. {a} p(w0|a)
5. {e} p(r0|e)

Then by (2.4) (using semiring 4 from Table 1, viz. the set of nonnegative real numbers
with ordinary addition and multiplication) the global kernel F (b, e, a) is just the function
p(b, e, a, r0, w0), so that, for example, the objective function at local domain 1 is

F1(b) =
∑

e,a

p(b, e, a, r0, w0)

= p(b, r0, w0).

But by Bayes’ rule, p(b|r0, w0) = p(b, r0, w0)/p(w0, r0), so that the conditional probability
of B, given the “evidence” (r0, w0), is

Pr{B = b|R = r0,W = w0} = p(b|r0, w0) = αF1(b),

where the constant of proportionality α is given by

α =

(∑

b

F1(b)

)−1

.

Similarly, the computation of the conditional probabilities of A and E can be accomplished
via evaluation of the objective functions at the local domains 4 and 5, respectively. Thus
the problem of probabilistic inference in Bayesian networks is a special case of the MPF
problem. We shall see in Section 4 that when the GDL is applied to problems of this type,
the result is an algorithm equivalent to the “probability propagation” algorithms known
in the artificial intelligence community.

2.5 Example. As a more useful instance of the probabilistic inference problem, we
consider a probabilistic state machine.2 At each time t ∈ {0, 1, . . . , n − 1}, the PSM has
state st, input ut and output yt. The ut are probabilistically generated, independently, with
probabilities p(ut). The output yt depends on the state st and input ut and is described

2 Our probabilistic state machines are closely related to the “hidden Markov models”
considered in the literature [32].

10

by the conditional probability distribution p(yt|st, ut). The state st+1 also depends on st
and ut, with conditional probability p(st+1|st, ut). If the a priori distribution of the initial
state s0 is known, we can write the joint probability of the inputs, state and outputs from
time 0 to n− 1 as

(2.5)

p(u0, . . . , un−1, s0, . . . , sn−1, y0, . . . , yn−1) =

p(s0)p(u0)p(y0|s0, u0)

n−1∏

t=1

p(st|st−1, ut−1)p(ut)p(yt|st, ut).

This means that the PSM is a Bayesian network, as depicted in Figure 2.

Suppose we observe the n output values, denoting these observations by ye0, . . . , y
e
n−1

(“e” for evidence), and wish to infer the values of the inputs based on this evidence. This
is a probabilitic inference problem of the type discussed in Example 2.4. We can compute
the conditional probability Pr{ut = a|ye0, . . . , yen−1} by taking the joint probability in (2.5)
with the observed values of yet and marginalizing out all the st’s and all but one of the
ut’s. This is an instance of the MPF problem, with the following local domains and kernels
(illustrated for n = 4):

local domain local kernel

1. {u0} p(u0)
2. {u1} p(u1)
3. {u2} p(u2)
4. {u3} p(u3)
5. {s0} p(s0)
6. {u0, s0} p(ye0|u0, s0)
7. {u1, s1} p(ye1|u1, s1)
8. {u2, s2} p(ye2|u2, s2)
9. {u3, s3} p(ye3|u3, s3)
10. {u0, s0, s1} p(s1|u0, s0)
11. {u1, s1, s2} p(s2|u1, s1)
12. {u2, s2, s3} p(s3|u2, s2)

This model includes as a special case convolutional codes, as follows. The state tran-
sition is deterministic, which means that p(st+1|st, ut) = 1 when st+1 = st+1(st, ut) and
p(st+1|st, ut) = 0 otherwise. Assuming a memoryless channel, the output yt is proba-
bilistically dependent on xt, which is a deterministic function of the state and input, and
so p(yt|st, ut) = p(yt|xt(st, ut)). Marginalizing the product of functions in (2.5) in the
sum-product and max-product semirings will then give us the maximum-likelihood input
symbols or input block, respectively. As we shall see below (Example 4.5), when the GDL is
applied here, we get algorithms equivalent to the BCJR and Viterbi decoding algorithms.3

3 Technically, to obtain an algorithm equivalent to Viterbi’s, it is necessary to take the
negative logarithm of (2.5), and then perform the marginalization in the min-sum semiring.

11

Figure 2 . The Bayesian network for the
probabilistic state machine in Example 2.5.

2.6 Example. Let Mi be a qi−1 × qi matrix with entries in a commutative semiring,
for i = 1, . . . , n. We denote the entries in Mi by Mi[xi−1, xi], where for i = 0, 1, . . . , n, xi
is a variable taking values in a set Ai with qi elements. Suppose we want to compute the
product

M = M1 ·M2 · · ·Mn.

Then for n = 2 we have by definition

(2.6) M [x0, x2] =
∑

x1

M1[x0, x1]M2[x1, x2],

and an easy induction argument gives the generalization

(2.7) M [x0, xn] =
∑

x1,...,xn−1

M1[x0, x1] · · ·Mn[xn−1, xn].

(Note that (2.7) suggests that the number of arithmetic operations required to multiply
these n matrices is 2q0q1 · · · qn.) Thus multiplying n matrices can be formulated as the
following MPF problem:.

local domain local kernel

1. {x0, x1} M1[x0, x1]
2. {x1, x2} M2[x1, x2]

...
n {xn−1, xn} Mn[xn−1, xn]

n+ 1 {x0, xn} 1,

12

the desired result being the objective function at local domain n+ 1.

As an alternative interpretation of (2.7), consider a trellis of depth n, with vertex set
A0 ∪ A1 · · · ∪ An, and an edge of weight Mi[xi−1, xi] connecting the vertices xi−1 ∈ Ai−1

and xi ∈ Ai. If we define the weight of a path as the sum of the weights of the component
edges, then M [x0, xn] as defined in (2.7) represents the sum of the weights of all paths
from x0 to xn. For example, Figure 3 shows the trellis corresponding to the multiplication
of three matrices, of sizes 2×3, 3×3, and 3×2. If the computation is done in the min-sum
semiring, the interpretation is that M [x0, xn] is the weight of a minimum-weight path from
x0 to xn.

A0 A1 A2 A3

a1

a2 b2

b1

Figure 3 . The trellis corresponding to the multiplication
of three matrices, of sizes 2 × 3, 3 × 3, and 3 × 2.

The (i, j)th entry in the matrix product is the
sum of the weights of all paths from ai to bj .

We shall see in Section 4 that if the GDL is applied to the matrix multiplication
problem, a number of different algorithms result, corresponding to the different ways of
parenthesizing the expression M1M2 · · ·Mn. If the parenthesization is

(((M1M2)M3)M4)M5,

(illustrated for n = 5), and the computation is in the min-sum semiring, Viterbi’s algorithm
results.

13

3. The GDL: an algorithm for solving the MPF problem.

If the elements of S stand in a certain special relationship to each other, then an algorithm
for solving the MPF problem can be based on the notion of “message passing.” The
required relationship is that the local domains can be organized into a junction tree [18].
What this means is that the elements of S can be attached as labels to the vertices of a
graph-theoretic tree T , such that for any two vertices vi and vj , the intersection of the
corresponding labels, viz., Si∩Sj , is a subset of the label on each vertex on the unique path
from vi to vj . Alternatively, the subgraph of T consisting of those vertices whose label
includes the element i, together with the edges connecting these vertices, is connected, for
i = 1, . . . , n.

For example, consider the following five local domains:

local domain

1. {x1}
2. {x1, x2}
3. {x1, x3}
4. {x2}
5. {x2, x4}

These local domains can be organized into a junction tree, as shown in Figure 4. For
example, the unique path from vertex 2 to vertex 3 is v2 → v1 → v3, and S2 ∩ S3 ⊆ S1, as
required.

x1

x1 x2 x1 x3

x2 x2 x4

1

2 3

4 5

Figure 4 . A junction tree.

On the other hand, the following set of four local domains cannot be organized into a
junction tree, as can be easily verified.

local domain

1. {x1, x2}
2. {x2, x3}
3. {x3, x4}
4. {x1, x4}

14

However, by adjoining two “dummy domains”

local domain

5. {x1, x2, x4}
6. {x2, x3, x4}

to the collection, we can devise a junction tree, as shown in Figure 5.

(In Section 4, below, we give a simple algorithm for deciding whether or not a given
set of local domains can be organized into a junction tree, for constructing one if it does
exist, and for finding appropriate dummy domains if it does not.)

x1 x2 x1 x4

x2 x3 x3 x4

x1 x2 x4

x2 x3 x4

1

2 3

4

5

6

Figure 5 . A junction tree which includes the local
domains {x1, x2}, {x2, x3}, {x3, x4}, and {x1, x4}.

In the “junction tree” algorithm, which is what we call the generalized distributive
law (GDL), if vi and vj are connected by an edge (indicated by the notation vi adj vj),
the (directed) “message” from vi to vj is a table containing the values of a function µi,j :
ASi∩Sj → R. Initially, all such functions are defined to be identically 1 (the semiring’s
multiplicative identity); and when a particular message µi,j is updated, the following rule
is used:

(3.1) µi,j(xSi∩Sj) =
∑

xSi\Sj∈ASi\Sj

αi(xSi)
∏

vk adj vi
k 6=j

µk,i(xSk∩Si).

A good way to remember (3.1) is to think of the junction tree as a communication network,
in which an edge from vi to vj is a transmission line that “filters out” dependence on all
variables but those common to vi and vj . (The filtering is done by marginalization.) When
the vertex vi wishes to send a message to vj , it forms the product of its local kernel with
all messages it has received from its neighbors other than vj , and transmits the product
to vj over the (vi, vj) transmission line.

15

Similarly the “state” of a vertex vi is defined to be a table containing the values of a
function σi : ASi → R. Initially, σi is defined to be the local kernel αi(xSi), but when σi
is updated, the following rule is used.

(3.2) σi(xSi) = αi(xSi)
∏

vk adj vi

µk,i(xSk∩Si).

In words, the state of a vertex vi is the product of its local kernel with each of the messages
it has received from its neighbors. The basic idea is that after sufficiently many messages
have been passed, σi(xSi) will be the objective function at Si, as defined in (2.2).

The question remains as to the scheduling of the message-passing and the state com-
putation. Here we consider two special cases, the single-vertex problem, in which the goal
is to compute the objective function at only one vertex v0, and the all-vertices problem,
where the goal is to compute the objective function at all vertices.4

For the single-vertex problem, the natural (serial) scheduling of the GDL begins by
directing each edge toward the target vertex v0. Then messages are sent only in the
direction toward v0, and each directed message is sent only once. A vertex sends a message
to a neighbor, when, for the first time, it has received messages from each of its other
neighbors. The target v0 computes its state when it has received messages from each of its
neighbors. With this scheduling, messages begin at the leaves (vertices with degree 1), and
proceed toward v0, until v0 has received messages from all its neighbors, at which point v0

computes its state and the algorithm terminates.

For example, if we wish to solve the single-vertex problem for the junction tree of
Figure 4, and the target vertex is v1, the edges should all be directed towards v1, as shown
in Figure 6. Then one possible sequence of messages and state computations runs as shown
in Table 2.

x1

x1 x2 x1 x3

x2 x2 x4

1

2 3

4 5

Figure 6 . The junction tree of Figure 4,
with the edges directed towards v1.

4 We do not consider the problem of evaluating the objective function at k vertices,
where 1 < k < M . However, as we will see in Section 5, the complexity of the M -vertex
GDL is at most four times as large as the 1-vertex GDL, so it is reasonably efficient to
“solve” the k-vertex problem using the M -vertex solution.

16

Round Message or State Computation

1 µ3,1(x1) =
∑
x3
α3(x1, x3)

2 µ4,2(x2) = α4(x2)

3 µ5,2(x2) =
∑
x4
α5(x2, x4)

4 µ2,1(x1) =
∑
x2
α2(x1, x2) · µ4,2(x2) · µ5,2(x2)

5 σ1(x1) = α1(x1) · µ2,1(x1) · µ3,1(x1).

Table 2.
A schedule for the single-vertex GDL for the

junction tree of Figure 4, with target vertex v1.

It will be shown in Section 5 that this scheduling of the single vertex GDL requires
at most

(3.3)
∑

v

d(v)|AS(v)| arithmetic operations,

where S(v) is the label of v, and d(v), the degree of v, is the number of vertices adjacent
to v. This should be compared to the complexity of the “obvious” solution, which as we
noted above is Mq1 · · · qn operations. For example, for the junction tree shown in Figure 6,
the complexity of the single-vertex GDL is by (3.3) at most 2q1 + 3q1q2 + q1q3 + q2 + q2q4

arithmetic operations, vs. 5q1q2q3q4q4 for the direct computation.

For the all-vertices problem, the GDL can be scheduled in several ways. For example,
in a fully parallel implementation, at every iteration, every state is updated, and every
message is computed and transmitted, simultaneously. In this case the messages and states
will stabilize after a number of iterations at most equal to the diameter of the tree, at which
point the states of the vertices will be equal to the desired objective functions, and the
algorithm terminates. Alternatively, the GDL can be scheduled fully serially, in which
case each message is sent only once, and each state is computed only once. In this case,
a vertex sends a message to a neighbor when, for the first time, it has received messages
from all of its other neighbors, and computes its state when, for the first time, it has
received messages from all its neighbors. In this serial mode, messages begin at the leaves,
and proceed inwards into the tree, until some nodes have received messages from all their
neighbors, at which point messages propagate outwards, so that each vertex eventually
receives messages from all of its neighbors.5 We will see in Section 4 that the fully-serial
all-vertices GDL requires at most 4

∑
v∈V d(v)|AS(v)| arithmetic operations.

There are also a variety of possible hybrid schedules, intermediate between fully par-
allel and fully serial. For example, Table 3 shows a hybrid schedule for the junction tree

5 We might therefore call the fully serial all-vertices GDL an “inward-outward” algorithm.

17

of Figure 4, in which the computation is organized into four rounds. The computations in
each round may be performed in any order, or even simultaneously, but the rounds must
be performed sequentially.

Round Message and State Computations

1 µ3,1(x1) =
∑
x3
α3(x1, x3)

µ4,2(x2) = α4(x2)
µ5,2(x2) =

∑
x4
α5(x2, x4)

2 µ1,2(x1) =
∑
x2
α1(x1, x2) · µ3,1(x1)

µ2,1(x1) =
∑
x2
α2(x1, x2) · µ4,2(x2) · µ5,2(x2)

3 µ1,3(x1) = α1(x1) · µ2,1(x1)
µ2,4(x2) =

∑
x1
α2(x1, x2) · µ1,2(x1) · µ5,2(x2)

µ2,5(x2) =
∑
x1
α2(x1, x2) · µ1,2(x1) · µ4,2(x2)

σ1(x1) = α1(x1) · µ2,1(x1) · µ3,1(x1)
σ2(x1, x2) = α2(x1, x2) · µ1,2(x1, x2) · µ4,2(x2) · µ5,2(x2)

4 σ3(x1, x3) = α3(x1, x3) · µ1,3(x1)
σ4(x2) = α4(x2) · µ2,4(x2)
σ5(x2, x4) = α5(x2, x4) · µ2,5(x2).

Table 3.
A “hybrid” schedule for the all-vertices GDL for the junction tree of Figure 4.

That concludes our informal discussion of GDL scheduling. We end this section with
what we call the “Scheduling Theorem” for the GDL.

Thus let T be a junction tree with vertex set V and edge set E. In the GDL, messages
can be passed in both directions on each edge, so it will be convenient to regard the edge
set E as consisting of ordered pairs of vertices. Thus for example for the tree of Figure 4,
we have

E = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 4), (4, 2), (2, 5), (5, 2)}.

A schedule for the GDL is defined to be a finite sequence of subsets of E. A typical schedule
will be denoted by E = (E1, E2, . . . , EN). The idea is that Et is the set of messages that
are updated during the tth round of the algorithm. In Tables 2 and 3, for example, the
corresponding schedules are

Table 2: E = ({(3, 1)}, {(4, 2)}, {(5, 2)}, {(2, 1)})
Table 3: E = ({(3, 1), (4, 2), (5, 2)}, {(1, 2), (2, 1)}, {(1, 3), (2, 4), (2, 5)}).

18

Given a schedule E = (E1, E2, . . . , EN), the corresponding message trellis is a finite
directed graph with vertex set V × {0, 1, . . . , N}, in which a typical element is denoted
by vi(t), for t ∈ {0, 1, . . . , N}. The only allowed edges are of the form (vi(t − 1), vj(t));
and (vi(t − 1), vj(t)) is an edge in the message trellis if either (vi, vj) ∈ Et or i = j. The
message trellises for the junction tree of Figure 4, under the schedules of Tables 2 and 3,
are shown in Figures 7 and 8, respectively. (In these figures, the shaded boxes indicate
which local kernels are known to which vertices at any time. For example, in Figure 7, we
can see that knowledge of the local kernels α2, α4, and α5 has reached v2 at time t = 3.
We will elaborate on this notion of “knowldege” in Appendix A.)

v1(t)

v2(t)

v3(t)

v4(t)

v5(t)

t=0 t=1 t=2 t=3 t=4

Figure 7 . The message trellis for the junction tree in Figure 4,
under the schedule of Table 2, viz., E1 = {(3, 1)},
E2 = {(4, 2)}, E3 = {(5, 2)}, E4 = {(2, 1)}.

3.1 Theorem (GDL Scheduling). After the completion of the message passing de-
scribed by the schedule E = (E1, E2, . . . , EN), the state at vertex vj will be the jth
objective as defined in (3.2) if and only if there is a path from vi(0) to vj(N) in the
corresponding message trellis, for i = 1, . . . , n.

A proof of Theorem 3.1 will be found in Appendix A, but Figures 7 and 8 illustrate the
idea. For example, in Figure 8, we see that there is a path from each of v1(0), . . . , v5(0) to
v2(2), which means (by the scheduling theorem) that after two rounds of message passing,
the state at v2 will be the desired objective function. This is why, in Table 3, we are able
to compute σ2 in round 3. Theorem 3.1 immediately implies the correctness of the single
vertex and all-vertices serial GDL described earlier in this section.

19

v1(t)

v2(t)

v3(t)

v4(t)

v5(t)

t=0 t=1 t=2 t=3

Figure 8 . The message trellis for the junction tree in Figure 4,
under the schedule of Table 3, viz., E1 = {(3, 1), (4, 2), (5, 2)},

E2 = {(1, 2), (2, 1)}, E3 = {(1, 3), (2, 4), (2, 5)}.

4. Constructing Junction Trees.

In Section 3 we showed that if we can construct a junction tree with the local domains as
vertex labels, we can devise a message-passing algorithm to solve the MPF problem. But
does such a junction tree exist? And if not, what can be done? In this section we will
answer these questions.

It is easy to decide whether or not a junction tree exists. The key is the local domain
graph GLD, which is a weighted complete graph with M vertices v1, . . . , vM , one for each
local domain, with the weight of the edge ei,j : vi ↔ vj defined by

wi,j = |Si ∩ Sj |.
If xk ∈ Si ∩ Sj , we will say that xk is contained in ei,j . Denote by wmax the weight of a
maximal-weight spanning tree of GLD.6 Finally, define

w∗ =

M∑

i=1

|Si| − n.

4.1 Theorem. wmax ≤ w∗, with equality if and only if there is a junction tree. If
wmax = w∗, then any maximal-weight spanning tree of GLD is a junction tree.

Proof: For each k = 1, . . . , n, denote by mk the number of sets Si which contain the
variable xk. Note that

∑n
k=1mk =

∑M
i=1 |Si|. Let T be any spanning tree of GLD, and

6 A maximal-weight spanning tree can easily be found with Prim’s “greedy” algorithm
[27], Chapter 3, [9], Section 24.2. In brief, Prim’s algorithm works by growing the tree one
edge at a time, always choosing a new edge of maximal weight.

20

let wk denote the number of edges in T which contain xk. Clearly w(T) =
∑n
k=1 wk.

Furthermore, wk ≤ mk − 1, since the subgraph Tk of T induced by the vertices containing
xk has no cycles, and equality holds if and only if Tk is connected, i.e., a tree. It follows
then that

w(T) =

n∑

k=1

wk ≤
n∑

k=1

(mk − 1) =

M∑

i=1

|Si| − n = w∗,

with equality if and only if each subgraph Tk is connected, i.e., if T is a junction tree.

4.1 Example. Here we continue Example 2.1. The LD graph is shown in Figure 9 (a).
Here w∗ = (3+2+2+1)−4 = 4. A maximal weight spanning tree is shown in Figure 9 (b),
and its weight is 4, so by Theorem 4.1, this is a junction tree, a fact that can easily be
checked directly. If we apply the GDL to this junction tree, we get the “algorithm” de-
scribed in our introductory example Example 1.1 (if we use the schedule E = {E1, E2, E3},
where E1 = {(4, 1), (2, 3)}, E2 = {(1, 3), (3, 1)}, E3 = {(1, 4)}).

If no junction tree exists with the given vertex labels Si, all is not lost. We can always
find a junction tree with M vertices such that each Si is a subset of the ith vertex label, so
that each local kernel αi may be associated with the ith vertex, by regarding it as a function
of the variables involved in the label. The key to this construction is the moral graph7

which is the undirected graph with vertex set equal to the set of variables {x1, . . . , xn},
and having an edge between xi and xj if there is a local domain which contains both xi
and xj .

Given a cycle in a graph, a chord is an edge between two vertices on the cycle which
do not appear consecutively in the cycle. A graph is triangulated if every simple cycle (i.e.,
one with no repeated vertices) of length larger than three has a chord.

In [18], it is shown that the cliques (maximal complete subgraphs) of a graph can
be the vertex labels of a junction tree if and only if the graph is triangulated. Thus, to
form a junction tree with vertex labels such that each of the local domains is contained in
some vertex label, we form the moral graph, add enough edges to the moral graph so that
the resulting graph is triangulated, and then form a junction tree with the cliques of this
graph as vertex labels. Each of the original local domains will be a subset of at least one
of these cliques. We can then attach the original local domains as “leaves” to the clique
junction tree, thereby obtaining a junction tree for the original set of local domains and
kernels, plus “extra” local domains corresponding to the cliques in the moral graph. We
can then associate one of the local kernels attached to each of the cliques to that clique,
and delete the corresponding leaf. In this way we will have constructed a junction tree for
the original set of local kernels, with some of the local domains enlarged to include extra
variables. However, this construction is far from unique, and the choices that must be
made (which edges to add to the moral graph, how to assign local kernels to the enlarged
local domains) make the procedure more of an art than a science.

7 The whimsical term “moral graph” originally referred to the graph obtained from a
DAG by drawing edges between – “marrying” – each of the parents of a given vertex [23].

21

x1,x2,x4

x1,x3

x1,x4 x2

2

1

1

1

x1,x2,x4

x1,x3

x1,x4 x2

2 1

1

(a)

(b)

Figure 9 . (a) The local domain graph and (b) one junction
tree for the local domains and kernels in Example 2.1.

For example, suppose the local domains and local kernels are

local domain local kernel

1. {x1, x2} α1(x1, x2)
2. {x2, x3} α2(x2, x3)
3. {x3, x4} α3(x3, x4)
4. {x1, x4} α4(x1, x4)

As we observed above, these local domains cannot be organized into a junction tree. The
moral graph for these domains is shown in Figure 10 (a) (solid lines). This graph is not
triangulated, but the addition of the edge 2–4 (dashed line) makes it so. The cliques in the
triangulated graph are {1, 2, 4} and {2, 3, 4}, and these sets can be made the labels in a
junction tree (Figure 10 (b)). We can attach the original four local domains as leaves to this

22

junction tree, as shown in Figure 10 (c) (note that this graph is identical to the junction
tree in Figure 5). Finally, we can assign the local kernel at {1, 4} to the local domain
{1, 2, 4}, and the local kernel at {3, 4} to the local domain {2, 3, 4}, thereby obtaining
the junction tree shown in Figure 10 (d). What we have done, in effect, is to modify the
original local domains by enlarging two of them, and viewing the associated local kernels
as functions on the enlarged local domains:

local domain local kernel

1. {x1, x2} α1(x1, x2)
2. {x2, x3} α2(x2, x3)
3′. {x2, x3, x4} α′3(x2, x3, x4) = α3(x3, x4)
4′. {x1, x2, x4} α′4(x1, x2, x4) = α4(x1, x4).

The difficulty is that we must enlarge the local domains enough so that they will support a
junction tree, but not so much that the resulting algorithm will be unmanageably complex.
We will return to the issue of junction tree complexity in Section 5.

1 2

34
(a) (b)

124

234

(c)

2 3

1 2

(d)

124

234

1 2

2 3 3 4

1 2

124

234

1 4

Figure 10 . Constructing a junction tree for the local domains
{1, 2}, {2, 3}, {3, 4}, and {4, 1} by triangulating the moral graph.

The next example illustrates this procedure in a more practical setting.

4.2 Example. Here we continue Example 2.2. The local domain graph is shown in
Figure 11. Since all edges have weight 1, any spanning tree will have weight 4, but w∗ =
12− 6 = 6. Thus by Theorem 4.1, the local domains cannot be organized into a junction
tree, so we need to consider the moral graph, which is shown in Figure 12 (a). It is not
triangulated (e.g. the cycle formed by vertices y1, y2, x2, and x1 has no chord), but it can be
triangulated by the addition of three additional edges, as shown in Figure 12 (b). There are
exactly three cliques in the triangulated moral graph, viz., {y1, y2, y3, x1}, {y2, y3, x1, x2},
and {y3, x1, x2, x3}. These three sets can be organized into a unique junction tree, and each
of the original 5 local domains is a subset of exactly one of these, as shown in Figure 13(a).

23

x1,x2,x3

y1,y2,y3

x1,y1 x2,y2 x3,y3

Figure 11 . The LD graph for the local
domains and kernels in Example 2.2. (All

edges have weight 1.) There is no junction tree.

y1 y2 y3

x1 x2 x3

y1 y2 y3

x1 x2 x3

(a)

(b)

Figure 12 . The moral graph (top) and a triangulated moral
graph (bottom) for the local domains and kernels in Example 2.2.

If we want a unique local domain for each of the 5 local kernels, we can retain two of the
original local domains, thus obtaining the junction tree shown in Figure 13(b). Since this
is a “single-vertex” problem, to apply the GDL, we first direct each of the edges towards
the target vertex, which in this case is {x1, x2, x3}. It is now a straightforward exercise to
show that the (serial, one-vertex) GDL, when applied to this directed junction tree, yields
the usual “fast” Hadamard transform. More generally, by extending the method in this
example, it is possible to show that the FFT on any finite Abelian group, as described,

24

y2 y3 x1 x2

y1 y2 y3 x1

y3 x1 x2 x3

y1 y2 y3 x1

y2 y3 x1 x2

y3 x1 x2 x3

y1 y2 y3

 x1 x2 x3

f(y1,y2,y3)

(-1)x1
 y

1

(-1)x2
 y

2

(-1)x3
 y

3

1

1.

2.

3.

4.

5.

(a) (b)

y1 y2 y3 x1 y1

x2 y2

x3 y3 x1 x2 x3

1. 2.

3.

4.5.

local kernel

Figure 13 . Constructing a junction tree for Example 4.2.

e.g., in [8] or [31], can be derived from an application of the GDL.8

4.3 Example. Here we continue Example 2.3. In this case the local domains can be
organized as a junction tree. One such tree is shown in Figure 14. It can be shown that the
GDL, when applied to the junction tree of Figure 14, yields the Gallager-Tanner-Wiberg
algorithm [15][34][39] for decoding linear codes defined by cycle-free graphs. Indeed, Fig-
ure 14 is identical to the “Tanner graph” cited by Wiberg [39] for decoding this particular
code.

4.4 Example. Here we continue Example 2.4. The local domains can be arranged
into a junction tree, as shown in Figure 15. (In general, the junction tree has the same
topology as DAG, if the DAG is cycle-free.) The GDL algorithm, when applied to the
junction tree of Figure 15, is equivalent to certain algorithms which are known in the
artificial intelligence community for solving the probabilistic inference problem on Bayesian
networks whose associated DAGs are cycle-free; in particular Pearl’s “belief propagation”
algorithm [29], and the “probability propagation” algorithm of Shafer and Shenoy [33].

4.5 Example. Here we continue Example 2.5, the probabilistic state machine. In
this case the local domains can be organized into a junction tree, as illustrated in Figure 16

8 For this, see [1], where it is observed that the moral graph for the DFT over a finite
Abelian group G is triangulated if and only if G is a cyclic group of prime-power order.
In all other cases, it is necessary to triangulate the moral graph, as we have done in this
example.

25

1 2

43

6 7

5

1,2,4

3,4,6 4,5,7

Figure 14 . A junction tree for Example 4.3.

e

a

ea,b,e

b

Figure 15 . A junction tree for Example 4.4.
This figure should be compared to Figure 1.

for the case n = 4. The GDL algorithm, applied to the junction tree of Figure 16, gives
us essentially the BCJR [5] and Viterbi [37][11] algorithms respectively. (For Viterbi’s
algorithm, we take the negative logarithm of the objective function in eq. (2.5), and use
the min-sum semiring, with a single target vertex, preferably the “last” {ui}, which in
Figure 16 is {u3}. For the BCJR algorithm, we use the objective function in eq. (2.5) as

26

it stands, and use the sum-product semiring, and evaluate the objective function at each
of the vertices {ui}, for i = 0, . . . , n − 1. In both cases the appropriate schedule is fully
serial.)

u0 u1 u2 u3

u0 s0 u0 s0 s1 u1 s1 u1 s1 s2 u2 s2 u2 s2 s3 u3 s3

1 2 3 4

6 7 8 910 11 12

s0

5

Figure 16 . A junction tree for the probabilistic
state machine (illustrated for n = 4).

4.6 Example. Here we continue Example 2.6, the matrix multiplication problem. It
is easy to see that for n ≥ 3, there is no junction tree for the original set of local domains,
because the corresponding moral graph is a cycle of length n + 1. It is possible to show
that for the product of n matrices, there are

1

n

(
2n− 2

n− 1

)

possible triangulations of the moral graph, which are in one-to-one correspondence with the
different ways to parenthesize the expression M1 · · ·Mn. For example, the parenthesization

((· · · (M1M2) · · ·)Mn−1)Mn

corresponds to the triangulation shown in Figure 17.

0 1

n

Figure 17 . The triangulation of the moral graph corresponding
to the parenthesization ((· · · (M1M2) · · ·)Mn−1)Mn.

27

Thus the problem of finding an optimal junction tree is identical to the problem
of finding an optimal parenthesization. For example, in the case n = 3, illustrated in
Figure 18, there are two different triangulations of the moral graph, which lead, via the
techniques described in this section, to the two junction trees shown in the lower part of
Figure 18. With the top vertex as the target, the GDL applied to each of these trees
computes the product M1M2M3. The left junction tree corresponds to parenthesizing the
product M1M2M3 as (M1M2)M3 and requires 2q0q1q2 + 2q0q2q3 arithmetic operations,
whereas the right junction tree corresponds to M1(M2M3) and requires 2q1q2q3 + 2q0q1q3

operations. Thus which tree one prefers depends on the relative size of the matrices. For
example, if q0 = 10, q1 = 100, q2 = 5, and q3 = 50, the left junction tree requires 15000
operations and the right junction tree takes 150, 000. (This example is taken from [9].)

0 1

23

0 1

23

0,3

0 1 2

0 1

0,3

0 1 3

1 2 3

1 2M1

M2

M3

1

M2

M3

M1

1

0 2 3

Figure 18 . The moral graph for Example 4.6, triangulated
in two ways, and the corresponding junction trees. The left

junction tree corresponds to the parenthesization (M1M2)M3,
and the one on the right corresponds to M1(M2M3).

As we discussed in Example 2.6, the matrix multiplication problem is equivalent to a
trellis path problem. In particular, if the computations are in the min-sum semiring, the
problem is that of finding the shortest paths in the trellis. If the moral graph is triangulated

28

as shown in Figure 17, the resulting junction tree yields an algorithm identical to Viterbi’s
algorithm. Thus Viterbi’s algorithm can be viewed as an algorithm for multiplying a chain
of matrices in the min-sum semiring. (This connection is explored in more detail in [4].

5. Complexity of the GDL.

In this section we will provide complexity estimates for the serial versions of the GDL dis-
cussed in Section 3. Here by complexity we mean the arithmetic complexity, i.e., the total
number of (semiring) additions and/or multiplications required to compute the desired
objective functions.

We begin by rewriting the message and state computation formulas (3.1) and (3.2),
using slightly different notation. The message from vertex v to vertex w is defined as (cf.
(3.1))

(5.1) µv,w(xv∩w) =
∑

xv\w∈AS(v)\S(w)

αv(xv)
∏

u adj v
u 6=v

µu,v(xu∩v).

and the state of vertex v is defined as (cf. (3.2))

(5.2) σv(xv) = αv(xv)
∏

u adj v

µu,v(xu∩v).

We first consider the single vertex problem, supposing that v0 is the target. For each
v 6= v0, there is exactly one edge directed from v toward v0. We suppose that this edge
is (v, w). To compute the message µv,w(xv∩w) as defined in (5.1) for a particular value of
xv∩w requires9 |AS(v)\S(w)|−1 additions, and |AS(v)\S(w)|(d(v)−1) multiplications, where
d(v) is the degree of the vertex v. Using simplified but (we hope) self-explanatory notation
we rewrite this as follows:

qv\w − 1 additions, and

qv\w · (d(v)− 1) multiplications.

But there are qv∩w
def
= |AS(v)∩S(w)| possibilities for xv∩w, so the entire message µv,w(xv∩w)

requires
(qv∩w)(qv\w − 1) = qv − qv∩w additions, and

(qv∩w)qv\w · (d(v)− 1) = (d(v)− 1)qv multiplications.

The total number of arithmetic operations required to send messages toward v0 along each
of the edges of the tree is thus

∑

v 6=v0

(qv − qv∩w) additions

∑

v 6=v0

(d(v)− 1)qv multiplications.

9 Here we are assuming that the addition (multiplication) of N elements of S requires
N − 1 binary additions (multiplications).

29

When all the messages have been computed and transmitted, the algorithm terminates
with the computation of the state at v0, defined by (5.2). This state computation requires
d(v0)qv0

further multiplications, so that the total is

∑

v 6=v0

(qv − qv∩w) additions

∑

v 6=v0

(d(v)− 1)qv + d(v0)qv0
multiplications.

Thus the grand total number of additions and multiplications is

(5.3) χ(T) =
∑

v∈V
d(v)qv −

∑

e∈E
qe,

where if e = (v, w) is an edge, its “size” qe is defined to be qv∩w.

Note that the formula in (5.3) gives the upper bound

(5.4) χ(T) ≤
∑

v∈V
d(v)qv

mentioned in Section 3.

The formula in (5.3) can be rewritten in a useful alternative way, if we define the
“complexity” of the edge e = (v, w) as

(5.5) χ(e) = qv + qw − qv∩w.

With this definition, the formula in (5.3) becomes

(5.6) χ(T) =
∑

e∈E
χ(e).

For example, for the junction tree of Figure 4, there are four edges and

χ(v1, v2) = q1 + q1q2 − q1 = q1q2

χ(v1, v3) = q1 + q1q3 − q1 = q1q3

χ(v2, v4) = q1q2 + q2 − q2 = q1q2

χ(v2, v5) = q1q2 + q2q4 − q2,

so that χ(T) = 3q1q2 + q1q3 + q2q4 − q2.

We next briefly consider the all-vertices problem. Here a message must be sent over
each edge, in both directions, and the state must be computed at each vertex. If this is done
following the ideas above in the obvious way, the resulting complexity is O(

∑
v d(v)2qv).

However, we may reduce this by noticing that if {a1, . . . , ad} is a set of d numbers, it
is possible to compute all the d products of d − 1 of the ai’s with at most 3(d − 2)

30

multiplications, rather than the obvious d(d−2). We do this by precomputing the quantities
b1 = a1, b2 = b1 · a2 = a1a2, . . . , bd−1 = bd−2 · ad−1 = a1a2 · · · ad−1, and cd = ad,
cd−1 = ad−1cd = ad−1ad, . . . , c2 = a2 · c3 = a2a3 · · · ad, using 2(d − 2) multiplications.
Then if âj denotes the product of all the ai’s except for aj , we have â1 = c2, â2 = b1 · c3,
. . . , âd−1 = bd−2 ·cd, âd = bd−1, using a further d−2 multiplications, for a total of 3(d−2).
With one further multiplication (bd−1 · ad), we can compute bd = a1a2 · · · ad.10

Returning now to the serial implementation of the all-vertex GDL, each vertex must
pass a message to each of its neighbors. Vertex v will have d(v) incoming messages, and
(prior to marginalization) each outgoing message will be the product of d(v) − 1 of these
messages with the local kernel at v. For its own state computation, v also needs the product
of all d(v) incoming messages with the local kernel. By the above argument, all this can
be done with at most 3d(v) multiplications for each of the qv values of the variables in the
local domain at v. Thus the number of multiplications required is at most 3

∑
v d(v)qv.

The marginalizations during the message computations remain as in the single-vertex case,
and, summed over all messages, require

∑

v∈V
d(v)qv − 2

∑

e∈E
qe

additions. Thus the total number of arithmetic operations is no more than 4
∑
v d(v)qv,

which shows that the complexity of the all-vertices GDL is at worst a fixed constant times
that of the single-vertex GDL. Therefore we feel justified in defining the complexity of a
junction tree, irrespective of which objective functions are sought, by (5.3) or (5.6). (In [23],
the complexity of a similar, but not identical, algorithm was shown to be upperbounded
by 3

∑
v qv +M maxv qv. This bound is strictly greater than the bound in (5.4).)

In Section 4, we saw that in many cases wmax = w∗ and the LD graph has more than
one maximal-weight spanning tree. In view of the results in this section, in such cases it
is desirable to find the maximal-weight spanning tree with χ(T) as small as possible. It
is easy to modify Prim’s algorithm to do this. In Prim’s algorithm, the basic step is to
add to the growing tree a maximal-weight edge which does not form a cycle. If there are
several choices with the same weight, choose one whose complexity, as defined by (5.5),
is as small as possible. The tree that results is guaranteed to be a minimum-complexity
junction tree [19]. In fact, we used this technique to find minimum-complexity junction
trees in Examples 4.1, 4.3, 4.4, and 4.5.

We conclude this section with two examples which illustrate the difficulty of finding the
minimum-complexity junction tree for a given marginalization problem. Consider first the
local domains {x1}, {x2}, {x3}, and {x1, x2, x3}. There is a unique junction tree with these
sets as vertex labels, shown in Figure 19 (a). By (5.3), the complexity of this junction tree
is 3q1q2q3. Now suppose we artificially enlarge the local domain {x2} to {x1, x2}. Then the

10 One of the referees has noted that the trick described in this paragraph is itself an
application of the GDL; it has the same structure as the forward-backward algorithm
applied to a trellis representing a repetition code of length d.

31

x1

x2

x3

x1 x3

x1 x2 x3

x1 x2

(a)

(b)

x1 x2 x3

Figure 19 . Enlarging a local domain
can lower the junction tree complexity.

modified set of local domains, viz., {x1}, {x1, x2}, {x3}, and {x1, x2, x3} can be organized
into the junction tree shown in Figure 19 (b), whose complexity is 2q1q2q3 + q1q2, which
is less than that of the original tree as long as q3 > 1.

As the second example, we consider the domains {x1, x4}, {x2, x5}, {x3, x6}, and
{x1, x2, x3}, which can be organized into a unique junction tree (Figure 20(a)). If we
adjoin the domain {x2, x3, x5}, however, we can build a junction tree (Figure 20(b)) whose
complexity is lower than the original one, provided that q1 is much larger than any of the
other qi’s. (It is known that the problem of finding the “best” triangulation of a given
graph is NP-complete [40], where “best” refers to having the minimum maximum clique
size.)

32

x1 x4

x1 x2 x3

(a)

(b)

x2 x3 x5

x2 x5

x3 x6

x1 x4 x1 x2 x3 x3 x6

x2 x5

Figure 20 . Adding an extra local domain
can lower the junction tree complexity.

6. A Brief History of the GDL.

Important algorithms whose essential underlying idea is the exploitation of the distributive
law to simplify a marginalization problem have been discovered many times in the past.
Most of these algorithms fall into one of three broad categories: decoding algorithms, the
“forward-backward algorithm,” and artificial intelligence algorithms. In this section we will
summarize these three parallel threads.

• Decoding Algorithms.

The earliest occurrence of a GDL-like algorithm that we are aware of is Gallager’s 1962
algorithm for decoding low-density parity-check codes [15][16]. Gallager was aware that
his algorithm could be proved to be correct only when the underlying graphical structure
has no cycles, but also noted that it gave good experimental results even when cycles
were present. Gallager’s work attracted little attention for 20 years, but in 1981 Tan-
ner [34], realizing the importance of Gallager’s work, made an important generalization
of low-density parity check codes, introduced the “Tanner graph” viewpoint, and recast
Gallager’s algorithm in explicit message-passing form. Tanner’s work itself went relatively
unnoticed until the 1996 thesis of Wiberg [39], which showed that the message-passing
Tanner graph decoding algorithm could be used not only to describe Gallager’s algorithm,
but also Viterbi’s and BCJR’s. Wiberg too understood the importance of the cycle-free
condition, but nevertheless observed that the turbo-decoding algorithm was an instance
of the Gallager-Tanner-Wiberg algorithm on a graphical structure with cycles. Wiberg
explicitly considered both the sum-product and min-sum semirings, and speculated on the

33

possibility of further generalizations to what he called “universal algebras” (our semirings).

In an independent series of developments, in 1967 Viterbi [37] invented his celebrated
algorithm for maximum-likelihood decoding (minimizing sequence error probability) of
convolutional codes. Seven years later (1974), Bahl, Cocke, Jelinek, and Raviv [5] published
a “forward-backward” decoding algorithm (see next bullet) for minimizing the bit error
probability of convolutional codes. The close relationship between these two algorithms
was immediately recognized by Forney [11]. Although these algorithms did not apparently
lead anyone to discover a class of algorithms of GDL-like generality, with hindsight we can
see that all the essential ideas were present.

• The forward-backward algorithm.

The forward-backward algorithm (also known as the M -step in the Baum-Welch algorithm)
was invented in 1962 by Lloyd Welch, and seems to have first appeared in the unclassified
literature in two independent 1966 publications [6][7]. It appeared explicitly as an algo-
rithm for tracking the states of a Markov chain in the early 1970’s [26][5] (see also the
survey articles [30] and [32]). A similar algorithm (in min-sum form) appeared in a 1971
paper on equalization [35]. The algorithm was connected to the optimization literature in
1987 [36], where a semiring-type generalization was given.

• Artificial Intelligence.

The relevant research in the AI community began relatively late, but it has evolved quickly.
The activity began in the 1980’s with the work of Kim and Pearl [20] and Pearl [29]. Pearl’s
“belief propagation” algorithm, as it has come to be known, is a message-passing algorithm
for solving the probabilistic inference problem on a Bayesian network whose DAG contains
no (undirected) cycles. Soon afterwards, Lauritzen and Spiegelhalter [23] obtained an
equivalent algorithm, and moreover generalized it to arbitrary DAGs by introducing the
triangulation procedure. The notion of junction trees (under the name “Markov tree”)
was explicitly introduced by Shafer and Shenoy [33]. A recent book by Jensen [18] is a
good introduction to most of this material. A recent unification of many of these concepts
called “bucket elimination” appears in [10], and a recent paper by Lauritzen and Jensen [22]
abstracts the MPF problem still further, so that the marginalization is done axiomatically,
rather than by summation.

In any case, by early 1996, the relevance of these AI algorithms had become apparent to
researchers in the information theory community [28][21]. Conversely, the AI community
has become excited by the developments in the information theory community [38][14],
which demonstrate that these algorithms can be successful on graphs with cycles. We
discuss this is in the next section.

34

7. Iterative and Approximate Versions of the GDL.

Although the GDL can be proved to be correct only when the local domains can be
organized into a junction tree, the computations of the messages and states in (3.1) and
(3.2) make sense whenever the local domains are organized as vertex labels on any kind of
a connected graph, whether it is a junction tree or not. On such a junction graph, there
is no notion of “termination,” since messages may travel around the cycles indefinitely.
Instead, one hopes that after sufficiently many messages have been passed, the states of
the selected vertices will be approximately equal to the desired objective functions. This
hope is based on a large body of experimental evidence, and some emerging theory.

• Experimental Evidence.

It is now known that an application of the GDL, or one of its close relatives, to an appropri-
ate junction graph with cycles, gives both the Gallager-Tanner-Wiberg algorithm for low-
density parity-check codes [24][25][39][28], and the turbo decoding algorithm [39][28][21].
Both of these decoding algorithms have proved to be extraordinarily effective experimen-
tally, despite the fact that there are as yet no general theorems that explain their behavior.

• Emerging Theory—Single-Cycle Junction Graphs..

Recently, a number of authors [39][38][2][12][3][1] have studied the behavior of the iterative
GDL on junction graphs which have exactly one cycle. It seems fair to say that, at least for
the sum-product and the min-sum semirings, the iterative GDL is fairly well understood
in this case, and the results imply, for example, that iterative decoding is effective for
most tail-biting codes. Although these results shed no direct light on the problem of the
behavior of the GDL on multi-cycle junction graphs, like those associated with Gallager
codes or turbo codes, this is nevertheless an encouraging step.

35

Appendix A. Proof of the Scheduling Theorem.

Summary: In this appendix, we will give a proof of the Scheduling Theorem 3.1, which
will prove the correctness of the GDL. The key to the proof is Corollary A.4, which tells
us that at every stage of the algorithm, the state at a given vertex is the appropriately
marginalized product of a subset of the local kernels. Informally, we say that at time t,
the state at vertex v is the marginalized product of the local kernels which are currently
“known” to v. Given this result, the remaining problem is to understand how knowledge of
the local kernels is disseminated to the vertices of the junction tree under a given schedule.
As we shall see, this “knowledge dissemination” can be described recursively as follows:

• Rule (1): Initially (t = 0), each vertex vi knows only its own local kernel αi.

• Rule (2): If a directed edge (vi, vj) is activated at time t, i.e., if (vi, vj) ∈ Et, then vertex
vj learns all the local kernels known to vi at time t− 1.

The proof of Theorem 3.1 then follows quickly from these rules.

We begin by introducing some notation. Let f(xS) be a function of the variable list
xS , and let T be an arbitrary subset of {1, . . . , n}. We denote by [f(xS)]T the function of
the variable list xS∩T obtained by “marginalizing out” the variables in f which are not in
T :

[f(xS)]T
def
=
∑

xS\T

f(xS).

A.1 Lemma. If S ∩ U ⊆ T , then

[[f(xS)]T]U = [f(xS)]U .

Proof: (Note first that Lemma A.1 is a special case of the single-vertex GDL, with the
following local domains and kernels.

local domain local kernel

1. {xS} f(xS)
2. {xT } 1
3. {xU} 1.

The appropriate junction tree is shown in Figure 21.)

xS xT xU

Figure 21 . A junction tree for Lemma A.1.

36

To see that the assertion is true, note that the variables not marginalized out in the
function [[f(xS)]T]U are those indexed by S ∩ T ∩ U . The variables not marginalized out
in [f(xS)]U are those indexed by S ∩ U . But by the hypothesis S ∩ U ⊆ T , these two sets
are equal.

A.2 Lemma. Let fi(xSi), for i = 1, . . . ,K be local kernels, and consider the MPF problem
of computing

(A.1) β(x(S1∪···SK)∩T)
def
= [

K∏

i=1

fi(xSi)]
T .

If no variable which is marginalized out in (A.1) occurs in more than one local kernel, i.e.,
if Si ∩ Sj ⊆ T for i 6= j, then

β(x(S1∪···SK)∩T) =
K∏

i=1

[fi(xSi)]
T
.

Proof: (Lemma A.2 is also a special case of the single-vertex GDL, with the following
local domains and kernels.

local domain local kernel

1 {xS1} f1(xS1)
...

...
...

K {xSK} fK(xSK)
K + 1 {xT } 1.

The appropriate junction tree is shown in Figure 22.)

xS1

xT

xS3xS2 xSK

Figure 22 . A junction tree for Lemma A.2.

In any case, Lemma A.2 is a simple consequence of the distributive law: Since each
variable being marginalized out in (A.1) occurs in at most one local kernel, it is allowable
to take the other local kernels out of the sum by distributivity. As an example, we have

∑

x1,x3,x4

f1(x1, x2)f2(x2, x3)f3(x2, x4) =
∑

x1

f1(x1, x2)
∑

x3

f2(x2, x3)
∑

x4

f3(x2, x4).

37

Now we are ready to consider the dynamics of the GDL. Consider an edge: eij : vi →
vj . Removing eij from the junction tree T breaks it into two components, Tij and Tji (see
Figure 23). For future reference, we denote the vertex set of Tij by Vij , and the edge set
by Eij

vi vj

eij
Tij Tji

Figure 23 . Deleting the edge eij breaks
the junction tree into two components.

Since eij is on the unique path between any vertex in Tij and any vertex in Tji, it
follows from the junction tree property that any variable which occurs in a vertex in both
components must occur in both vi and vj . Thus the message µi,j , which may be viewed
as a message from Tij to Tji, is a function of exactly those variables which occur in both
components.

In what follows, for each index i = 1, . . . ,M we define

Ni = {k : (vk, vi) ∈ E},
and for each pair of indices (i, j) such that (vi, vj) ∈ E, we define

Ni,j = {k : (vk, vi) ∈ E, k 6= j}.
In words, Ni represents the (indices of) the neighbors of vi, and Ni,j represents the (indices
of) the neighbors of vi other than vj .

Now let E = (E1, E2, . . . , EN) be a schedule for a junction tree, as defined in Section 3,
i.e., a finite list of subsets of E, and let µi,j(t) be the value of the message µi,j after the
tth round of E .

A.3 Theorem. The message µi,j(t) is the product of a subset of the local kernels in Tij ,
with the variables that do not occur in Tji marginalized out. Specifically, we have

(A.2) µi,j(t) =


 ∏

k∈Ki,j(t)
αk



Sj

,

where Ki,j(t) is a subset of Vij , the vertex set of Tij . The sets Ki,j(t) are defined inductively
as follows:

(A.3)

Ki,j(0) = ∅, and for t ≥ 1,

Ki,j(t) =

{
Ki,j(t− 1) if eij /∈ Et
{i}⋃`∈Ni,j K`,i(t− 1) if eij ∈ Et.

38

Proof: We use induction on t, the case t = 0 being simply a restatement of the initialization
rule µi,j = 1. Assuming the theorem proved for t− 1, we assume ei,j is updated in the tth
round, and consider µi,j(t):

µi,j(t) =


αi

∏

`∈Ni,j
µ`,i(t− 1)



Sj

by (3.1)

=


αi

∏

`∈Ni,j


 ∏

k∈K`,i(t−1)

αk



Si



Sj

by induction.

Any variable that occurs in two different messages µ`1,i(t− 1) and µ`2,i(t− 1) must also,
by the junction tree property, occur in αi, so we may apply Lemma A.2 to rewrite the last
line as

=





αi

∏

`∈Ni,j

∏

k∈K`,i(t−1)

αk



Si



Sj

.

Since a variable that occurs in one of the kernels in the above equation and also in vj must,
by the junction tree property, also occur in vi, it follows from Lemma A.1 that this last
expression can be simplified to


αi

∏

`∈Ni,j

∏

k∈K`,i(t−1)

αk



Sj

=


 ∏

k∈Ki,j(t)
αk



Sj

,

the last equality because of the definition (A.3).

A.4 Corollary. For all t ≥ 0, the state σi(t) has the value

(A.4) σi(t) =


 ∏

k∈Ji(t)
αk



Si

,

where the set Ji(t) is defined by

(A.5) Ji(t) = {i}
⋃

j∈Ni
Kj,i(t).

Proof: By definition (3.2),

σi(t) = αi
∏

j∈Ni
µj,i(t)

= αSii
∏

j∈Ni
µj,i(t).

39

(We know that αi = αSii , since the kernel αi is by definition a function only of the variables
involved in the local domain Si.) By Theorem A.3, this can be written as

σi(t) = αSii
∏

j∈Ni


 ∏

k∈Kj,i(t)
αk



Si

.

But by the junction tree property, any variable that occurs in two of the bracketed terms
must also occur in αi, so that by Lemma A.2,

σi(t) =


αi

∏

j∈Ni

∏

k∈Kj,i(t)
αk



Si

=


 ∏

k∈Ji(t)
αk



Si

by the definition (A.5).

Theorem A.3 tells us that at time t, the message from vi to vj is the appropriately
marginalized product of a subset of the local kernels, viz., {αk : k ∈ Ki,j(t)}, and Corol-
lary A.4 tells us that at time t, the state of vertex vi is the appropriately marginalized
product of a subset of the local kernels, viz., {αk : k ∈ Ji(t)}, which we think of as
the subset of local kernels which are “known” to vi at time t. Given these results, the
remaining problem is to understand how knowledge of the local kernels is disseminated
to the vertices of the junction tree under a given schedule. A study of equation (A.5),
which gives the relationship between what is known at the vertex vi and what is known
by the incoming edges, together with the message update rules in (A.3), provides a a nice
recursive description of exactly how this information is disseminated:

• Rule (1): Initially (t = 0), each vertex vi knows only its own local kernel αi.

• Rule (2): If a directed edge (vi, vj) is activated at time t, i.e., if (vi, vj) ∈ Et, then vertex
vj learns all the local kernels previously known to vi at time t− 1.

We shall now use these rules to prove Theorem 3.1.

Theorem 3.1 asserts that vi knows each of the M local kernels α1, . . . , αM at time
t = N if and only if there is a path in the message trellis from vj(0) to vi(N), for all
j = 1, 2, . . . ,M . We will now prove the slightly more general statement that vi knows αj
at time t = N if and only if there is a path in the message trellis from vj(0) to vi(N).

To this end, let us first show that if vi knows αj at t = N , then there must be a path
in the message trellis from vj(0) to vi(N). Because we are in a tree, there is a unique path
from vj to vi, say

Pj,i = [vk0 , vk1 , . . . , vkL−1
, vkL],

where k0 = j and kL = i. Denote by t` the first (smallest) time index for which vk` knows
αj . Then by Rule 2 and an easy induction argument, we have

(A.6) 1 ≤ t1 < t2 < · · · < tL ≤ N.

40

(In words, knowledge of αj must pass sequentially to vi through the vertices of the path
Pj,i.) In view of (A.6), we have the following path from vj(0) = vk0(0) to vi(N) = vkL(N)
in the message trellis from vj(0) to vi(N):

(A.7) [vk0
(0), . . . , vk0

(t1 − 1); vk1
(t1), . . . , vk1

(t2 − 1); . . . ; vkL(tL), . . . , vkL(N)].

Conversely, suppose there is a path from vj(0) to vi(N) in the message trellis. Then
since apart from “pauses” at a given vertex, this path in the message trellis must be the
unique path Pi,j from vj to vi, Rule 2 implies that knowledge of the kernel αj sequentially
passes through the vertices on the path Pi,j , finally reaching vi at time N .

This completes the proof of Theorem 3.1.

41

References.

1. S. M. Aji, Graphical Models and Iterative Decoding. Ph.D. thesis, Caltech, 1999.

2. S. M. Aji, G. B. Horn, and R. J. McEliece, “On the convergence of iterative decoding
on graphs with a single cycle,” Proc. CISS 98 (Princeton, March 1998).

3. S. M. Aji, G. B. Horn, R. J. McEliece, and M. Xu, “Iterative min-sum decoding
of tail-biting codes.” Proc. IEEE Information Theory Workshop, Killarney Ireland,
June 1998. pp. 68–69.

4. S. M. Aji, R. J. McEliece, and M. Xu, “Viterbi’s algorithm and matrix multiplication.”
Presented at CISS 1999, March 1999.

5. L. R. Bahl, J. Cocke, F. Jelinek, J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. IT-20 (March
1974), pp. 284–287.

6. L. E. Baum and T. Petrie, “Statistical inference for probabilistic functions of finite-
state Markov chains,” Ann. Math. Stat., vol 37 (1966), pp. 1559–1563.

7. R. W. Chang and J. C. Hancock, “On receiver structures for channels having mem-
ory,” IEEE Trans. Inform. Theory, vol. IT-12 (Oct. 1966), pp. 463–468.

8. J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex
Fourier series,” Math. Comp., vol. 19 (April 1965), p. 297.

9. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. Cam-
bridge, Mass.: MIT-McGraw-Hill, 1990.

10. R. Dechter, “Bucket elimination: A unifying framework for probabilistic inference.”
To appear in Learning and Inference in Graphical Models, 1998.

11. G. D. Forney, Jr., “The Viterbi algorithm,” Proc. IEEE, vol. 61 (March 1973),
pp. 268–278.

12. G. D. Forney,Jr., F. R. Kschischang, and B. Marcus, “Iterative decoding of tail-biting
trellises.” Presented at IEEE Information Theory Workshop, San Diego, California,
February 1998.

13. B. J. Frey, Bayesian Networks for Pattern Classification, Data Compression, and
Channel Coding. University of Toronto Ph.D. thesis, 1997.

14. B. J. Frey and D. J. C. MacKay, “A revolution: Belief propagation in graphs with
cycles,” Proc. 1997 Neural Information Processing Systems Conference, in press.

15. R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform. Theory,
vol. IT-8 (Jan. 1962), pp. 21–28.

16. R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, Mass.: MIT Press,
1963.

17. R. C. Gonzalez and R. E. Woods, Digital Image Processing. Reading, Mass.: Addison,
Wesley, 1992.

42

18. F. V. Jensen, An Introduction to Bayesian Networks. New York: Springer-Verlag,
1996.

19. F. V. Jensen and F. Jensen, “Optimal junction trees,” pp. 360–366 in Proc. 10th
Conf. on Uncertainty in Artificial Intelligence, R. L. de Mantaras and D. Poole, eds.
San Francisco: Morgan Kaufmann, 1994.

20. J. H. Kim and J. Pearl, “A computational model for causal and diagnostic reasoning,”
Proc. 8th International Joint Conf. Artificial Intelligence (1983), pp. 190–193.

21. F. R. Kschischang and B. J. Frey, “Iterative decoding of compound codes by prob-
ability propagation in graphical models.” IEEE J. Sel. Areas Comm. vol. 16, no. 2
(Feb. 1998), pp. 219–230.

22. S. L. Lauritzen and F. V. Jensen, “Local computation with valuations from a com-
mutative semigroup,” Annals Math. AI, vol. 21, no. 1 (1997), pp. 51–69.

23. S. L. Lauritzen and D. J. Spiegelhalter, “Local computation with probabilities on
graphical structures and their application to expert systems,” J. R. Statist. Soc. B
(1988), pp. 157–224.

24. D. J. C. MacKay and R. M. Neal, “Good codes based on very sparse matrices,”
pp. 100-111 in Cryptography and Coding, 5th IMA conference, Springer Lecture notes
in Computer Science no. 1025. Berlin: Springer-Verlag, 1995.

25. D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density
parity-check codes,” Electronics Letters, vol 32 (1996), pp. 1645–1646. Reprinted in
Electronics Letters, vol 33 (1996), pp. 457–458.

26. P. L. McAdam, L. R. Welch, and C. L. Weber, “M.A.P. bit decoding of convolu-
tional codes,” Proc. 1972 IEEE International Symposium on Information Theory,
(Asilomar, California, Jan. 1972) p. 91.

27. R. J. McEliece, R. B. Ash, and C. Ash. Introduction to Discrete Mathematics. New
York: Random House, 1989.

28. R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng, “Turbo decoding as an instance
of Pearl’s ‘belief propagation’ algorithm.” IEEE J. Sel. Areas Comm. vol. 16, no. 2
(Feb. 1998), pp. 140–152.

29. J. Pearl, Probabilistic Reasoning in Intelligent Systems. San Mateo, CA: Morgan
Kaufmann, 1988.

30. A. M. Poritz, “Hidden Markov models: a guided tour,” Proc. 1988 IEEE Conf.
Acoustics, Speech, and Signal Processing, vol. 1, pp. 7–13.

31. E. C. Posner, “Combinatorial structures in planetary reconnaissance,” in Error Cor-
recting Codes, H. B. Mann, ed. New York: John Wiley and Sons, 1968.

32. L. Rabiner, “A tutorial on hidden Markov models and selected applications in speech
recognition,” Proc. IEEE, vol. 77 (1989), pp. 257–285.

33. G. R. Shafer and P. P. Shenoy, “Probability propagation,” Ann. Math. Art. Intel.,

43

vol. 2 (1990), pp. 327–352.

34. R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform.
Theory, vol. IT-27 (Sept. 1981), pp. 533-547.

35. G. Ungerboeck, “Nonlinear equalization of binary signals in Gaussian noise,” IEEE
Trans. Comm. Tech., vol. COM-19 (Dec. 1971), pp. 1128–1137.

36. S. Verdu and V. Poor, “Abstract dynamic programming models under commutativity
conditions,” SIAM J. Control and Optimization, vol. 25 (July 1987), pp. 990-1006.

37. A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE Trans. Inform. Theory, vol. IT-13 (Apr. 1967), pp. 260–
269.

38. Y. Weiss, “Correctness of local probability propagation in graphical models with
loops,” submitted to Neural Computation, July 1998.

39. N. Wiberg, Codes and Decoding on General Graphs. Linköping Studies in Science
and Technology, Dissertations no. 440. Linköping, Sweden, 1996.

40. M. Yannakakis, “Computing the minimum fill-in is NP-complete,” SIAM J. Alg.
Discrete Methods, vol. 2 (1981), pp. 77–79.

44

